The TESLA Linear Collider

Winfried Decking (DESY)

for the TESLA Collaboration

Outline

- Project Overview
- Highlights 2000/2001
 - Publication of the TDR
 - Cavity R&D
 - TTF Operation
- A0 and PITZ
- TESLA Beam Dynamics
- Site Investigation (PFV)
- Summary

TESLA – A Quick Overview

- Superconducting 1.3 GHz cavities
 - small wakefields
 - high wall-plug power to beam power efficiency
 - long beam pulse with large inter-bunch spacing
- 500-800 GeV c.m.
- Luminosity $3.4-5.8\times10^{34}$ cm⁻²s⁻¹
- Proposed by an international collaboration (42 institutes, 10 countries) on a site at DESY in Hamburg/Germany

Layout

Positron Source

- γ produced by high energy electron beam in undulator placed before the IP
- Thin target converts the γ to positrons

Electron Sources

Damping Ring

- 17 km long to accommodate TESLA bunch train
- Looks unconventional, but major 'new' issue is space charge, cured by local coupling
- Needs a 20 ns rise/fall-time injection kicker system

Beam Delivery and Interaction Region

- 1st IP has no crossing angle
- FFTB style layout

TESLA Parameters

Site length	km	33			
# of cavities		21024			
Energy (c.m.)	GeV	500		800	
		e ⁺ e ⁻	e e	γγ	e ⁺ e ⁻
Repetition Rate	Hz		5		4
Beam pulse length	μs	950 860		860	
# of bunches		2820 4886		4886	
Bunch spacing	ns	337		176	
Charge per bunch		2e10		1.4e10	
Beam size at IP	nm	553 / 5 157		157 / 5	391 /2.8
Bunch length at IP	mm	0.3			
Beamstrahlung	%	3.2	2.0		4.3
Luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	3.4	0.47	0.6	5.8
Total beam power	MW	22.6 34			
Linac electric power	MW	97 150		150	
Accelerating gradient	MV/m	23.4 35			
# of klystrons	MW	584 1240			

The TDR

- 1: Executive Summary
- 2: The Accelerator
- 3: Physics at an e+e-Linear Collider
- 4: A Detector for TESLA
- 5: The X-Ray Free Electron Laser
- 6: Appendices

- Colloquium March 2001
- 1134 authors from 36 countries
- Part 2: The Accelerator
 - 380 authors
 - 54 institutes
 - major activity in 2000
 - Includes:
 - System description
 - Technical description
 - Project costs and schedule

Highlights Cavity R&D

- Standard 9-cell cavities >25 MV/m
- Gradient record >42 MV/m in electro polished seamless single-cell NB cavity
- Gradient > 40 MV/m in seamless single-cell NBCu cavity and in electro polished single-cell NB cavity
- Gradient 32 MV/m in electro polished 9-cell NB cavity

Standard Cavity Preparation

- Niobium sheets (RRR=300) are eddy-current scaned to avoid foreign material inclusions
- Industrial production of full nine-cell cavities:
 - Deep-drawing of subunits (half-cells, etc.) from niobium sheets
 - Electron-beam welding according to detailed specification
- 800 °C high temperature treatment stress anneals the Nb and removes hydrogen
- 1400 °C high temperature treatment with titanium getter layer to increase the thermal conductivity (RRR=500)
- Chemical etching to remove damage layer and titanium getter layer
- High pressure water rinsing as final treatment to avoid particle contamination

What do we get?

Excitation Curve Cavities Latest Production

Some Statistics

Mode analysis (single cell gradient of 9-cell cavity)

70 60 ■ Third Production 29,4 MV/m 50 Number of cells Second production 26.8 MV/m 23,7 MV/m ■ First production ■ Prototype 10 0 5 10 35 40 E_{acc} [MV/m]

Knwon defects can explain tails

So – Where are we?

- 3 production series of 9-cell cavities with ≈ 30 cavities each
- Improvements for series 2 and 3:
 - welding technique
 - eddy current scans of every
 Nb-sheet to detect
 imperfections
- 5 modules built so far, 3 tested with beam
- 4 (+1) more modules to be built
 - one with electropolished cavities

The Road to 35 MV/m

Quench limit

Improve surface quality of cavities through electropolishing

Lorentz forces / detuning

Cavity stiffening

Active tuning with piezoelectric tuner

Field emission

Cleaning, high power conditioning

Electropolishing (KEK, CERN/CEA/DESY)

Electropolishing Results – Single Cell

Sample of single cell NB cavities

Same 6 cavities after BCP resp. El

12 cavities > 40 MV/m worldwide, 10 EP, 2BCP

Electropolishing Results - 9-cell Cavities

9 cell NB cavity

- Very promising result on 1st EP 9-cell cavity
- Goal:
 - Improve EP procedure
 - Built a module out of EP cavities only by 2003
- Infrastructure for 9-cell EP built at DESY, commissioning starts March
- Module 6 will be made of EP cavities only, test in 2003

TESLA Test Facility

Future Module Tests at TTF1 and 2

• Full beam-loading with high gradient

Superstructure without/with beam

Reconstruction TTF1 to TTF2

• Module 1* (25 MV/m)

• Module 3, 4, 5 (all around 25 MV/m)

RF tests

Beam operation

Module 6 (electro-polished)

On module test stand

- In TTF2

March/April 02

July-September 02

May 02 – June 03

July-October 02

Feb.-April 03

start July 03

End of 2003

2004

TESLA RF Distribution System

286 RF Units per LINAC:

- 10,296 Cavities
- 858 Cryomodules
- 286 Klystrons

Multibeam Klystron

Acceptance test:

116 kV, 10 MW, 1.5 ms, 5 Hz, η =65%

Typical operation at TTF in 2001:

95-100 kV, 3-4 MW, 1.5 ms, 1 Hz

Beam Loading Compensation

Full TESLA current

Performance of low level RF control

Lorentz Force Detuning

Superstructure

Two 9-cell resonators are fed by one input coupler

power coupler

Higher filling factor 78.9% -- 84.8%

ie gradient for 500 GeV

23.4 -- 22 MV/m

Less input couplers and simpler waveguide-system Reduced cost

Resonators have independent tuners

TESLA HOM Model

Frequency (ave. meas.) [GHz]	Loss factor (simulation) [V/pC/m ²]	R/Q (simulation) $[\Omega/cm^2]$	Q (meas.)
	TE_{111} -	ike	
1.5505	19.98	0.76	$7.0 \cdot 10^4$
1.6991	301.85	11.21	$5.0 \cdot 10^4$
1.7252	423.41	15.51	$2.0 \cdot 10^4$
1.7545	59.86	2.16	$2.0 \cdot 10^4$
1.7831	49.20	1.75	$7.5 \cdot 10^3$
000484000	TM_{110}	like	0.000031003
1.7949	21.70	0.77	$-1.0 \cdot 10^4$
1.8342	13.28	0.46	$5.0 \cdot 10^4$
1.8509	11:26	0.39	$2.5 \cdot 10^4$
1.8643	191.56	6.54	$5.0 \cdot 10^4$
1.8731	255.71	8.69	$7.0 \cdot 10^4$
1.8795	50.80	1.72	$1.0 \cdot 10^6$
	TE-li	oe	
2.5630	42.41	1.05	$1.0 \cdot 10^{5}$
2.5704	20.05	0.50	$1.0 \cdot 10^{6}$
2.5751	961.28	23.80	$5.0 \cdot 10^4$

all modes damped below 1×10⁵, but ...

Higher Order Mode Measurements with Beam

High-Q HOM in the 3rd Passband

- •Measured with intensity modulated beam with position offset
- •Detected in HOM coupler and broadband BPM

HOM Pickup Signal

HOM at 2.585 GHz

Beam at 2.6 GHz

frequency domain

time domain

Damping the 2.585 GHz mode

DESY type HOM coupler One coupler is "mirrored"

Coupling depends on frequency and polarization

Flat Beam Experiment at A0/FERMILAB

Extract flat beam from RF-gun through combination of non-zero solenoid field on cathode surface and skew quad beam transformer

Maximum measured emittance ratio: 50/1

Photo Injector Test Stand in Zeuthen

First photo electrons January 2002

'Banana' Effect – Beam-Beam Simulation

- •Instability driven by vertical beam profile distortion
- •Strong for high disruption
- •Distortion caused by transverse wakefields and quad offset – only a few percent emittance growth
- •Tuning can remove static part

Nominal TESLA Beam Parameters +

y-z correlation (equivalent to few % projected emittance growth)

Beam centroids head on

'Banana' Effect

TDR Parameters

$$\sigma_s$$
= 300 μ m
 β_x = 15 mm
 β_v = 0.4 mm

Bunch length shortened

$$\sigma_s = 150 \,\mu\text{m}$$
 $\beta_x = 20 \,\text{mm}$
 $\beta_v = 0.3 \,\text{mm}$

DR to IP Simulations

Gaussian bunch from DR

Ideal machine

Change of bunch compressor phase by $\pm 2.5 \text{ deg}$ (powerfull knob at the SLC)

This is just an example what one can (and will) do now

Planfeststellungsverfahren (PFV)

- Procedure to obtain legal approval to built TESLA on the specific site (not the political approval)
- Investigate:
 - Impact on Environment
 - Impact on Humans
 - Impact on Ecology
 - Safety issues

– ...

Experimental Area

DESY Site and Cryo-Hall

Church of Rellingen

PFV

- Group of approximately 30 people (DESY and external contractors) works on:
 - Compiling the relevant informtion
 - Provide information to the public
- 3-D CAD heavely used for planing and communicating the concept
- Information publically available on the WWW http://www.desy.de/tesla-planung/
- This is almost like pooring the concrete

Summary

- 9 years of R&D on TESLA culminated in the publication of the TDR March 2001
- The technology for a 500 GeV collider is at hand
- Cavity R&D program continues with the goal to reach the ultimate performance limit of SC cavities
- TESLA collaboration has initiated the formal approval procedure to built a linear collider in Hamburg
- Since Snowmass 2001 a very intense international discussion has started on how, who, where, what, when ... and will continue during LC02

Thanks to all colleagues for providing me with information.